Essential Causal Inference Techniques for Data Science

4.5
stars

30 ratings

Offered By

1,518 already enrolled

In this Guided Project, you will:

Learn the limitations of AB testing and why causal inference techniques can be powerful.

Understand the intuition behind and how to implement the four main causal inference techniques in R.

Explore newer methods at the intersection of causal inference and machine learning and implement them in R.

2 hours
Beginner
No download needed
Split-screen video
English
Desktop only

Data scientists often get asked questions related to causality: (1) did recent PR coverage drive sign-ups, (2) does customer support increase sales, or (3) did improving the recommendation model drive revenue? Supporting company stakeholders requires every data scientist to learn techniques that can answer questions like these, which are centered around issues of causality and are solved with causal inference. In this project, you will learn the high level theory and intuition behind the four main causal inference techniques of controlled regression, regression discontinuity, difference in difference, and instrumental variables as well as some techniques at the intersection of machine learning and causal inference that are useful in data science called double selection and causal forests. These will help you rigorously answer questions like those above and become a better data scientist!

Skills you will develop

  • Regression Discontinuity Design

  • Causal Inference

  • Instrumental Variable

  • regression

  • Difference In Differences

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

  1. Use Controlled / Fixed Effects Regression to estimate impact of customer satisfaction on customer revenue.

  2. Use Regression Discontinuity to estimate the impact of customer support on renewal probability.

  3. Use Difference in Difference to estimate the impact of raising prices on revenue.

  4. Use Instrumental Variables to see whether using the mobile app leads to increased customer retention.

  5. Use Double Selection to speed up AB tests and get more precise estimates.

  6. Use Causal Forests to find heterogeneous treatment effects separated by registration source for impact of discounts.

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Reviews

TOP REVIEWS FROM ESSENTIAL CAUSAL INFERENCE TECHNIQUES FOR DATA SCIENCE

View all reviews

Frequently Asked Questions

By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.

Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.

Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.

You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.

Guided Projects are not eligible for refunds. See our full refund policy.

Financial aid is not available for Guided Projects.

Auditing is not available for Guided Projects.

At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.

Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.

You'll learn by doing through completing tasks in a split-screen environment directly in your browser. On the left side of the screen, you'll complete the task in your workspace. On the right side of the screen, you'll watch an instructor walk you through the project, step-by-step.